MEMS 5607: Introduction to Polymer Blends and Composites
The course covers topics in multicomponent polymer systems (polymer blends and polymer composites) such as: phase separation and miscibility of polymer blends, surfaces and interfaces in composites, microstructure and mechanical behavior, rubber toughened plastics, thermoplastic elastomers, block copolymers, fiber reinforced and laminated composites, techniques of polymer processing with an emphasis on composites processing, melt processing methods such as injection molding and extrusion, solution processing of thin films, selection of suitable processing methods and materials selection criteria for specific applications. Advanced topics include: nanocomposites such as polymer/CNT composites, bioinspired nanocomposites, and current research challenges.
MEMS 5608: Introduction to Polymer Science and Engineering
Topics covered in this course are: the concept of long-chain or macromolecules, polymer chain structure and configuration, microstructure and mechanical (rheological) behavior, polymer phase transitions (glass transition, melting, crystallization), physical chemistry of polymer solutions (Flory-Huggins theory, solubility parameter, thermodynamics of mixing and phase separation), polymer surfaces and interfaces, overview of polymer processing (extrusion, injection molding, film formation, fiber spinning) and modern applications of synthetic and bio-polymers .
MEMS 5606: Soft Nanomaterials
Soft nanomaterials, which range from self-assembled monolayers (SAMs) to complex 3D polymer structures, are gaining increased attention owing to their broad range applications. The course intends to introduce the fundamental aspects of nanotechnology pertained to soft matter. Various aspects related to the design, fabrication, characterization and application of soft nanomaterials will be discussed. Topics that will be covered include but not limited to SAMs, polymer brushes, Layer-by-Layer assembly, responsive polymers structures (films, capsules), polymer nanocomposites, biomolecules as nanomaterials and soft lithography.